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Abstract
In a Multi-Variant Execution Environment (MVEE), several
slightly different versions of the same program are executed
in lockstep. While this is done, a monitor compares the
behavior of the versions at certain synchronization points
with the aim of detecting discrepancies which may indicate
attacks.

As we show, the monitor can be implemented entirely in
user space, eliminating the need for kernel modifications. As
a result, the monitor is not a part of the trusted code base.

We have built a fully functioning MVEE, named Orches-
tra, and evaluated its effectiveness. We obtained benchmark
results on a quad-core system, using two variants which
grow the stack in opposite directions. The results show that
the overall penalty of simultaneous execution and monitor-
ing of two variants on a multi-core system averages about
15% relative to unprotected conventional execution.

Categories and Subject Descriptors D.4.6 [Operating Sys-
tems]: Security and Protection — Security kernels; K.6.5
[Management of Computing and Information Systems]: Se-
curity and Protection — Invasive software.

General Terms Design, Experimentation, Performance,
Reliability, Security

Keywords process monitoring, intrusion detection, multi-
variant execution, multi-core processors, vulnerability

1. Introduction
Software vulnerabilities have been a major threat for decades.
The use of safe programming languages, such as Java and
C#, in recent years has alleviated the problem, but there are
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still many software packages written in C and C++. High
performance and low-level programming provisions have
made C/C++ indispensable for many applications, but writ-
ing safe and secure programs using these languages is often
difficult. As a result, software vulnerabilities continue to ex-
ist in software and finding mechanisms to spot and remove
them automatically continues to be a major challenge.

Many techniques have been developed to eliminate vul-
nerabilities, but none of them provide an ultimate solution.
Modern static-analysis tools are capable of finding many
programming errors, but lack of run-time information lim-
its their capabilities, preventing them from finding all er-
rors. They also produce a relatively large number of false
positives, making them expensive to deploy in practice. Dy-
namic and run-time tools are often not effective either, be-
cause they do not have a reference for comparison in order to
detect misbehavior. Moreover, the performance overhead of
sophisticated detection algorithms utilized by such run-time
tools is often prohibitively high in production systems [Hast-
ings 1992, Nethercote 2003].

Multi-variant code execution [Cox 2006, Berger 2006,
Salamat 2008a;b] is a run-time monitoring technique that
prevents malicious code execution and addresses the prob-
lems mentioned above. Vulnerabilities that allow the injec-
tion of malicious code are among the most dangerous form
of security flaws since they allow attackers to gain com-
plete control over the targeted system. Multi-variant exe-
cution protects against malicious code execution attacks by
running two or more slightly different variants of the same
program in lockstep. At certain synchronization points, their
behavior is compared against each other. Divergence among
the behavior of the variants is an indication of an anomaly in
the system and raises an alarm.

Extra computational overhead imposed by multi-variant
execution is in the range afforded by most security sensi-
tive applications where performance is not the first prior-
ity, such as government and banking software. Besides, the
large amount of parallelism which inherently exists in multi-
variant execution helps it take advantage of multi-core pro-



cessors. The number of cores in multi-core processors is in-
creasing rapidly. For instance, Intel has promised 80 cores
by 2011 [Intel 2006]. Many of these cores are often idle
due to the lack of extractable parallelism in most applica-
tions or due to the bottlenecks imposed by memory or I/O
devices [Hsu 2003]. A multi-variant execution environment
(MVEE) can engage the idle cores in these systems to im-
prove security with little performance overhead.

Unlike many previously proposed techniques to prevent
malicious code execution [Kc 2003, Barrantes 2003, Cowan
1998] that use random and/or secret keys in order to pre-
vent attacks, multi-variant execution is a secret-less system.
It is designed on the assumption that program variants have
identical behavior under normal execution conditions (“in-
specification” behavior), but their behavior differs under ab-
normal conditions (“out-of-specification” behavior). There-
fore, the choice in what to vary, e.g., heap layout or instruc-
tion set, has a vital role in protecting the system against dif-
ferent classes of attacks. It is important that every variant be
fed identical copies of each input from the system simultane-
ously. This design makes it impossible for an attacker to send
individual malicious inputs to different variants and compro-
mise them one at a time. If the variants are chosen properly,
a malicious input to one variant causes collateral damage in
some of the other instances, causing them to deviate from
each other. The deviation is then detected by a monitoring
agent which enforces a security policy and raises an alarm.

In contrast to previous work, our MVEE is an unpriv-
ileged user-space application which does not need kernel
privileges to monitor the variants and, therefore, does not
increase the trusted computing base (TCB) for processes not
running on top of it. Increasing the size of the TCB is detri-
mental to the overall security of a system. This is because
larger code bases are more prone to errors and are harder to
validate. This has raised concerns in recent years and many
researchers have started investigating methods to reduce the
TCB size [McCune 2008, Kauer 2007, Murray 2008].

Our proposed architecture allows running conventional
applications without engaging the MVEE (see Figure 1).
Thus, normal applications may run conventionally on the
system and in parallel with security sensitive applications
which are executed on top of the MVEE.

In particular, this paper contributes the following:

• A novel technique to build a user-space MVEE that does
not need any OS kernel modification. Our MVEE super-
vises the execution of parallel instances of the subject
application using the debugging facilities of a standard
Linux kernel.

• A new technique for variant generation based on re-
versing the direction of stack growth. Utilizing this
technique with multi-variant execution defends against
known stack-based buffer overflow attacks in real time.
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Figure 1. Our proposed architecture does not grow trusted
code of the operating system and allows execution of con-
ventional applications without engaging the MVEE.

• A solution to the problem of preventing false positives
caused as a result of inconsistent scheduling of threads
and processes in multi-threaded and multi-process appli-
cations.

• A solution to the problem of preventing false positives
caused by asynchronous signal delivery.

• Solutions to support a wider range of system calls in
multi-variant execution, including the exec family.

Section 2 describes the monitoring mechanism used in
our MVEE. Section 3 discusses the sources of inconsisten-
cies among the variants which could cause false positives
in MVEEs and presents methods to handle them. Section 4
presents reverse stack execution as a variant generation tech-
nique that allows stopping stack-based buffer overflow at-
tacks when used in an MVEE. Section 5 evaluates security
and performance of our implementation. Section 6 presents
related work and Section 7 concludes the paper.

2. The Monitor
The monitor is the main component of our multi-variant
execution environment. It is the process invoked by the user
and receives the paths of the executables that must be run as
variants. The monitor creates one child process per variant
and starts execution. It allows the variants to run without
interruption as long as they are modifying their own process
space. Whenever a variant issues a system call, the request is
intercepted by the monitor and the variant is suspended. The
monitor then attempts to synchronize the system call with
the other variants. All variants need to make the exact same
system call with equivalent arguments (explained below)
within a small time window. The invocation of a system call
is called a synchronization point.

Our monitor has a set of rules for determining if the
variants are synchronized with each other. If p1 to pn are
the variants of the same program p, they are considered to
be in conforming states if at every synchronization point the
following conditions hold:



1. ∀si, sj ∈ S : si = sj

where S = {s1, s2, ..., sn} is the set of all invoked
system calls at the synchronization point and si is the
system call invoked by variant pi.

2. ∀aij , aik ∈ A : aij ≡ aik

where A = {a11, a12, ..., amn} is the set of all the sys-
tem call arguments encountered at the synchronization
point, aij is the ith argument of the system call invoked
by pj and m is the number of arguments used by the en-
countered system call. A is empty for system calls that do
not take arguments. Note that argument equivalence does
not necessarily mean that argument values themselves are
identical. For example, when an argument is a pointer to
a buffer, the contents of the buffers are compared and the
monitor expects them to be the same, whereas the point-
ers (actual arguments) themselves can be different. For-
mally, the argument equivalence operator is defined as:

a ≡ b⇔
{

if type 6= buffer : a = b
else : content(a) = content(b)

with type being the argument type expected for this argu-
ment of the system call. The content of a buffer is the set
of all bytes contained in it:

content(a) := {a[0]...a[size(a)− 1]}

with the size function returning the first occurrence of a
zero byte in the buffer in case of a zero-terminated buffer,
or the value of a system call argument used to indicate
the size of the buffer in case of buffers with explicit size
specification.

3. ∀ti ∈ T : ti − ts ≤ ω
where T = {t1, t2, ..., tn} is the set of times when the
monitor intercepts system calls, ti is the time that sys-
tem call si is intercepted by the monitor, and ts is the
time that the synchronization point is triggered. This is
the time that the first system call invocation is encoun-
tered at this synchronization point. ω is the maximum
amount of wall-clock time that the monitor will wait for
a variant. ω is specified in the policy and is application
and hardware dependent. For example, on an n-processor
system ω may be small because the expectation is that
the variants are executed in parallel and should reach the
synchronization point almost simultaneously. Once ω has
elapsed, those variants that have not invoked any system
call are considered non-complying.

If any of these conditions is not met, an alarm is raised
and the monitor takes an appropriate action based on a
configurable policy. In our current prototype, we terminate
and restart all the variants, but other policies such as vot-
ing among the variants and terminating the non-conforming
ones are possible.

Care should be taken when using majority voting, as be-
havior of the majority does not necessarily indicate correct

behavior. If the majority are susceptible to a particular type
of attack, the system could incorrectly terminate the legiti-
mate minority and continue with the compromised variants.
Therefore, the choice of variation mechanisms and the num-
ber of the variants have a vital role in the correctness of
the system when majority voting is used to tolerate attacks.
While the focus of this paper is on intrusion detection and
prevention, we plan to publish mechanisms designed to tol-
erate attacks and repair compromised variants in our future
work.

2.1 Monitor Security
The monitor isolates the variants from the OS kernel and
monitors all communications between them and the kernel.
As mentioned before, the monitor is implemented as an un-
privileged process that uses the process debugging facili-
ties of the host operating system (Linux) to intercept system
calls. This mechanism simplifies maintenance as patches to
the OS kernel need not be re-applied to an updated version
of the kernel. Moreover, errors in the monitor itself are less
severe since the monitor is a regular unprivileged process, as
opposed to a kernel patch or module running in privileged
mode. If the monitor was compromised, an attacker would
be limited to user-level privileges and would need a privi-
lege escalation to gain system-level access.

The monitor is a separate process with its own address
space and no other process in the system, including the vari-
ants, can directly manipulate its memory space. Therefore, it
is difficult to compromise the monitor by taking control of a
program variant.

Conventional system call monitors are susceptible to
mimicry attacks, e.g., [Parampalli 2008]. These monitors
expect certain sequences of system call invocations; if the
monitored program does not follow any of the known se-
quences, they raise an alarm and stop execution. The con-
ventional monitors cannot check and verify all the arguments
passed to the system calls, especially contents of buffers
written to output devices. This is because input data and OS
behavior varies between sequences of system calls, chang-
ing the arguments and making them unpredictable. Mimicry
attacks can remain undetected by keeping system calls the
same as those that would have been invoked by the legiti-
mate program, while only changing some of the system call
arguments. For example, assume a legitimate Apache server
opens an HTML file and sends its contents over the net-
work. A mimicry attack could keep the open system call
intact and pass the path of a file that contains sensitive infor-
mation instead of the HTML file to the system call. In this
scenario the Apache server would send sensitive information
over the network and a naive system call monitor would not
be able to detect the attack. Mimicry attacks are not effective
against our monitor because the MVEE checks both system
calls and their arguments.



2.2 System Call Monitoring
A multi-variant environment and all the variants executed in
this system must have the same behavior as that of running
any one of the variants conventionally on the host operating
system. The monitor is responsible for providing this char-
acteristic by performing the I/O operations itself and send-
ing the results to the variants. When the variants try to read
input data, the monitor suspends them, intercepts the input,
and then sends identical copies of the data to all the variants.
This is not only required to mimic the behavior of single
application, but it is also essential to prevent attackers from
compromising one variant at a time. Similarly, all output op-
erations are solely performed by the monitor after making
sure that all the variants agree on the output data.

Depending on the system call and its arguments, the mon-
itor determines whether the variants should run the system
call or it should be executed inside the monitor. System
calls that generate immutable results (e.g., uname) are al-
lowed to be executed by all the variants. If the system call
result is not expected to be the same among all variants
and the system call does not change the system state (e.g.,
gettimeofday, getpid), the call is executed by the first
variant. If it changes the system state (e.g., write, mkdir),
it is executed by the monitor. In either case, the results are
copied to all other variants.

The monitor is notified twice per system call, once at the
beginning of the call and once when the kernel has finished
executing the system call handler and has prepared return
values. After ensuring that the variants have invoked the
same system call with equivalent parameters, the system call
is executed. The Linux ptrace implementation requires
us to perform a system call once a system call has been
initiated by a program variant. However, if the system call
is executed only by the monitor, the variants must skip the
call. In this case, the monitor replaces the system call by a
low-overhead call that does not modify the programs’ states
(e.g., getpid). The debugging interface of the OS allows
the monitor to do this by changing the registers of the variant
at the beginning of the system call invocation. Changing the
registers causes a different system call to be executed than
the one initially requested.

File, socket, and standard I/O operations are performed
by the monitor and the variants only receive the results.
When a file is opened for writing, for example, the monitor is
the only process that opens the file and sets the registers of
the variants so that it appears to them that they succeeded
in opening the file. All subsequent operations on such a
file are performed by the monitor and the variants are just
recipients of the results. This method fails if the variants try
to map a file to their memory spaces using mmap. The file
descriptor they received from the monitor was not actually
opened in their contexts and, hence, mmap would return an
error. This causes a major restriction because shared libraries
are mapped using this approach. We solve the problem by

allowing the variants to open files locally if requested to
be opened read-only. This solution solves the problem of
mapping shared libraries, but if a program tries to map a file
opened for writing, it will fail. This is still an open problem,
although our experiences indicate that mmap is rarely used
in this manner.

When the mmap system call is used to map a file into the
address space of a process, reads and writes to the mapped
memory space are equivalent to reads and writes to the
file, and can be performed without calling any system call.
This allows an attacker to take control over one variant and
compromise the other variants using shared memory. To
prevent this vulnerability, we deny any mmap request that
can create potential communication routes between the vari-
ants and only allow MAP ANONYMOUS and MAP PRIVATE.
MAP SHARED is allowed only with read-only permission. In
practice, this does not seem to be a significant limitation for
most applications.

Our platform also puts certain restrictions on the exec
family of system calls. These system calls are allowed only
if the files that are required to be executed are in a white-list
passed to the monitor. The full path of all executables that
each variant is allowed to execute is provided to the monitor
and the monitor ensures that the variants do not execute any
program other than those provided. It is obvious that the
variants and all the executables that they can execute must
be properly diversified.

2.3 Monitor-Variant Communication
The monitor spawns the variants as its own children and
traces them. Since the monitor is executed in user mode, it
is not allowed to directly read from or write to the variants’
memory spaces. In order to compare the contents of indirect
arguments passed to the system calls, the monitor needs to
read from the memory of the variants. Also, it needs to write
to their address spaces, if a system call executed by the
monitor on behalf of the variants returns results in memory.

One method to read from the memory of the processes is
to call ptrace with PTRACE PEEKDATA when the vari-
ants are suspended. PTRACE POKEDATA can similarly be
used to write to the variants. Because ptrace only returns
four bytes at a time, ptrace has to be called many times
to read a large block of memory from the variants’ address
spaces. Every call to ptrace requires a context switch from
the monitor to the OS kernel and back, which makes this
technique inefficient for reading large buffers. To improve
performance, we create a shared memory block per variant
which is shared by the monitor and one variant.

Shared memory is chosen over named pipes (FIFOs) for
performance reasons. Anonymous pipes cannot be used be-
cause they can only be created between a child process and
its parent, while not all the variants in our system are chil-
dren of the monitor. Because the variants may create new
child processes, the monitor is not the parent of these chil-
dren. Therefore, they cannot be connected to the monitor



through anonymous pipes. Named pipes work well in con-
necting these processes to the monitor, but they are not as ef-
ficient as shared memory. The downside of using both shared
memory and FIFOs is the security risk, since any process
can connect to them and try to access their contents. How-
ever, each shared memory block has a key and processes are
allowed to attach a block only if they have the correct key.
When we create shared memory blocks, their permissions
are set so that only the user who has executed the moni-
tor can read from or write to them. Therefore, the risk is
limited to the case of a malicious program that is executed
in the context of the same user or a super user. Both cases
would be possible only when the system is already compro-
mised. Also note that a compromised variant cannot access
another variant’s shared memory even if it somehow found
the other variant’s shared memory key, because attaching a
shared memory block needs a system call invocation which
is caught by the monitor.

Attaching the shared memory blocks to variants, as well
as reading from and writing to them is not built into the
applications executed in the MVEE. It is the monitor that
has to force the variants to perform these operations. The
creation of the shared memory blocks is postponed until they
are needed. They are created by the monitor, but attaching
to them has to be performed by the variants. Our method
of forcing the variants to perform the required operations is
based on the fact that the monitor only needs to read from
or write to the address spaces of the variants when they are
suspended at a system call. At such a point, the monitor
makes a backup of the registers of the variants and replaces
the original system call with an appropriate one (e.g., ipc
or shmget). This makes the variants run the new system
call instead of the original one and enables them to attach
the appropriate shared memory block. After performing the
operation, if the original system call needs to be executed by
all variants (e.g., mmap), the variants’ registers are restored
by the monitor and the original system call is executed.

Reading to or writing from shared memory does not need
a system call. In order to perform these operations, the mon-
itor makes each variant to allocate a block of memory using
the same system call replacement method explained above.
The monitor uses this memory block to inject a small piece
of code that copies the contents of a buffer to another one
(similar to memcpy). The injected code receives the ad-
dresses of source and destination buffers and their lengths
in registers. Reading from or writing to the shared memory
blocks is done by this code. When the monitor needs to ac-
cess a variant’s memory space, it backs up the variant’s reg-
isters and sets the instruction pointer of the variant to the
injected code and makes the variant write to its shared mem-
ory. A system call invocation instruction (i.e., int 0x80)
at the end of the injected code notifies the monitor as soon
as the variant finishes copying.
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Figure 2. Comparison of the performance of transmitting
data using shared memory, FIFOs or ptrace. The vertical
axis shows the elapsed time, in microseconds, to transfer a
buffer and the horizontal axis shows the size of the buffer.
Both axes are logarithmic scale.

In order to protect this piece of code from being overwrit-
ten, the monitor forces the variant to mark it write-protected
immediately after the monitor injects the code. A malicious
variant cannot mark it writable without being detected by the
monitor, because it has to invoke a system call to do so.

Our experiments show that the time spent to transfer a
buffer using ptrace increases linearly with the buffer size,
but it is almost constant using FIFOs when the buffer is
smaller than 4KB (see Figure 2). The size of FIFOs is not
configurable without recompiling the OS kernel and is set to
4KB in the Linux distribution we use for our experiments.
As a consequence, large buffer sizes need multiple FIFO it-
erations, requiring multiple context switches. These context
switches significantly increase the overhead of FIFOs when
transmitting large buffers. Shared memory has the least over-
head when the buffer size is larger than 40 bytes and for
buffers fewer than 40 bytes in length, ptrace is the most
efficient mechanism. Therefore, the monitor uses ptrace
to transfer buffers smaller than 40 bytes and uses shared
memory for transferring larger ones. For a 128KB buffer,
shared memory is more than 900 times faster than ptrace
and 20 times faster than FIFOs. Hence, using shared mem-
ory greatly improves the monitoring performance for appli-
cations that frequently pass large buffers to the system calls.

3. Inconsistencies Among the Variants
There are several sources of inconsistencies among the vari-
ants that can cause false positives in multi-variant execution.
Scheduling of child processes and threads, signal delivery,
file descriptors, process IDs, time and random numbers must
be handled properly in a multi-variant environment to pre-
vent false positives.



3.1 Scheduling
Scheduling of child processes or threads created by the vari-
ants can cause the monitor to observe different sequences of
system calls and raise a false alarm. To prevent this situation,
corresponding variants must be synchronized to each other.
Suppose p1 and p2 are the main variants and p1−1 is p1’s
child and p2−1 is p2’s child. p1 and p2 must be synchronized
to each other and p1−1 and p2−1 must also be synchronized
to each other. We may choose to use a single monitor to su-
pervise the variants and their children or we can use several
monitors to do so. Using a single monitor can cause unnec-
essary delays in responding to their requests. Suppose p1 and
p2 invoke a system call whose arguments take a large amount
of time to compare. Just after the system call invocation and
while the monitor is busy comparing the arguments, p1−1

and p2−1 invoke a system call that could be quickly checked
by the monitor, but since the monitor is busy, the requests of
the children cannot be processed immediately and they have
to wait for the monitor to finish its first task.

To tackle this problem, a new monitoring thread is
spawned by the monitor responsible for the parent whenever
variants create new child processes or threads. Monitoring
of the newly created children is handed over to the new mon-
itor. Figure 3 shows the hierarchy of the variants and their
children and also the monitoring processes that supervise
them. p1 and p2 are the main variants that are monitored by
Monitor 1. p1−1 and p2−1 are the first children of the main
variants that are monitored by Monitor 1-1 which is a child
of Monitor 1 and so on.

As mentioned before, we use ptrace to synchronize
the variants. Unfortunately, ptrace is not designed to be
used in a multi-threaded debugger. As a result, handing the
control of the new children over to a new monitor is not
straightforward. The new monitor is not allowed to trace
the child variants unless the parent monitor detaches from
the variants first and lets the new monitor attach to them.
When the parent monitor detaches from the variants, the
kernel sends a signal to the variants and allows them to
continue execution normally, without notifying the monitor
at system call invocations. This would cause some system
calls to escape the monitoring before the new monitor is able
to attach to the variants.

We solved the problem by letting the parent monitor start
monitoring the new child variants until they invoke the first
system call. For example, in Figure 3 the Monitor 1 starts
monitoring p1−1 and p2−1 until they call the first system
call. Monitor 1 saves the system call and its arguments and
replaces it with a pause system call. Then, Monitor 1 de-
taches from p1−1 and p2−1. The variants receive a con-
tinue signal, but immediately run pause and get suspended.
Monitor 1 spawns a new monitoring thread, which would be
Monitor 1-1, and passes the process IDs of p1−1 and p2−1 to
it. Monitor 1-1 attaches to the children, restores the original
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Figure 3. A new monitoring thread is spawned whenever
the variants create new child processes. Monitoring of the
newly created children is handed over to the new monitoring
thread. The dashed lines in the figure connect parent pro-
cesses to their children.

system call replaced by pause, and starts monitoring p1−1

and p2−1 without missing any system call.

3.2 Signal Delivery
Asynchronous signal delivery can also cause divergence
among variants. For example, assume variant p1 receives
a signal and starts executing its signal handler. p1’s signal
handler then invokes system call s1, causing the monitor to
wait for the same system call from p2. Meanwhile, variant
p2 has not received the signal and is still running its main
program code. When p2 calls system call s2, the monitor
will detect the difference between s1 and s2 and raise an
alarm.

Whenever a signal is delivered to a variant, the OS pauses
the variant and notifies the monitor. The monitor has the
choice to deliver the signal to the variant or ignore it. The
monitor immediately delivers signals that terminate program
execution, such as SIGTERM and SIGSEGV. Other signals
are delivered to all variants synchronously, meaning that
signals are delivered to all variants either before or after a
synchronization point. If at least half of the variants receive
a signal before making a system call, and the rest invoke the
system call, the monitor makes the latter variants skip the
system call by replacing it with a non-state-changing call
and forces them to wait for the signal. The monitor then
delivers the signal to all variants and restores the system
call in those variants that have been made to skip it. The
variants that are forced to wait for a signal and do not receive



it within a configurable amount of time are considered as
non-complying.

If fewer than half of the variants receive a signal and the
rest invoke a system call, the signal is ignored and the vari-
ants which are stopped by the signal are resumed. The mon-
itor keeps a list of pending signals for each variant. The ig-
nored signals are added to these lists. As more variants re-
ceive the signal, the monitor checks the lists and when half
of the variants have received the signal, the signal is deliv-
ered using the method mentioned above. The only difference
is that the signal has to be sent again to the variants that ig-
nored it. The monitor sends the signal to these variants and
removes it from the variants’ pending signal lists.

We use majority voting to decide when to deliver signals
despite the fact that majority voting without further consid-
eration about the type and number of variants could intro-
duce potential risks in the system (see Section 2). Since sig-
nal delivery time by itself cannot damage the system, using
majority voting in signal delivery is not problematic. In fact
the protection mechanisms of all modern operating systems
prevents processes to have any outside effect unless they in-
voke a system call. Therefore, if any variant is compromised,
it has to eventually invoke a system call to cause damage.
Since the system call monitoring does not use majority vot-
ing, the attack will be eventually caught before it can cause
any damage to the system.

3.3 File Descriptors and Process IDs
As mentioned in the previous section, the monitor allows
the variants to open files with read-only permission. Also,
anonymous pipes that connect the variants to their children
are created by the variants. The file descriptors assigned to
these files or pipes are not necessarily the same in different
variants and can cause discrepancies among them. There-
fore, the monitor replaces the assigned file descriptors by
a replicated file descriptor and sends this replicated file de-
scriptor to all the variants running the system call. The moni-
tor keeps a record of the replicated file descriptor and the real
file descriptors assigned to the variants by the OS. When a
subsequent system call that operates on one of these files is
encountered, the monitor restores the original file descrip-
tors before letting the system call execute. As a result, the
OS receives the correct file descriptor and operates on the
intended file.

A similar approach is taken for process and group IDs.
The monitor tracks the process identifiers (PIDs) of the vari-
ants. All PIDs of variants monitored by a monitoring thread
are mapped to a unique value. Whenever a system call that
reads the PID of a variant (getpid) is called, its result is
replaced by the unique value and, consequently, all the vari-
ants receive the same PID. System calls that use these PIDs,
such as kill, are also intercepted before their execution
and the real PIDs of the variants are restored by the monitor.
Therefore, the OS receives the correct values when running

the system call. The same approach is taken for the group,
parent, and thread group IDs.

3.4 Time and Random Numbers
Time can be another source of inconsistency in multi-variant
execution. The solution for this problem is simple. When-
ever a time-reading system call is encountered, the monitor
invokes the same system call only once and sends the result
that it has obtained to all the variants.

Random numbers that are generated by the variants
would be different if the variants used different random
seeds. Removing the sources of inconsistencies makes all the
variants use the same seed and generate the same sequence
of random numbers. Reading from /dev/urandom is also
monitored. The variants are not allowed to read this pseudo
file directly. The monitor reads the file and sends the result
to all the variants.

3.5 False Positives
We have addressed removing most sources of inconsistency
among the variants, but there are still a few cases that can
cause false positives. Although the variants are synchronized
at system calls, the actual system calls are not usually exe-
cuted at the exact same time. As mentioned above, files that
are requested to be opened as read-only are opened by the
variants. If any of these files is changed by a third applica-
tion after one variant has read it and before it is read by the
other variants, there is a race condition and the variants will
receive different data which will cause divergence among
them.

Another false positive can be triggered if variants try to
read the processor time stamp counters directly, e.g., using
the RDTSC instruction available with x86 processors. Read-
ing the time stamp counters is performed without any system
call invocation, so the monitor is not notified and cannot re-
place the results that the variants receive. Using system calls
(e.g., gettimeofday) to read the system time solves this
problem, although it has higher performance overhead.

Applications that output their memory addresses, such as
printing the address of objects on the stack or heap, may
trigger a false positive.

4. Reverse Stack Execution
Reverse stack execution is a compiler-driven technique to
generate variants. We use this method to evaluate the ef-
fectiveness of our MVEE. We generate two variants that
write the stack in opposite directions; one variant writes the
stack conventionally (downward on x86), and the other one
writes it in the reverse direction. The variant that writes the
stack upward is resilient against activation record overwrites.
As Figure 4 shows, when a stack-based buffer overflow vul-
nerability is exploited, the injected data overwrites the return
address of the function in the conventional variant, but the re-
turn address remains intact in the reverse stack variant. This
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by exploiting buffer overflow vulnerabilities when the stack
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causes the variants to run two different sets of instructions
which will cause divergence and is detected by the monitor.

Multi-variant execution of these two variants allows us
to prevent known stack-based buffer overflow attacks, in-
cluding activation record overwrites, return-to-lib(c) [Nergal
2001, Pincus 2004] and function pointer overwrites.

We modified GCC version 4.2.1 [GNU] to generate vari-
ants that write to the stack in the reverse direction. We also
modified diet libc [Diet libc] to be able to generate reverse-
stack executables. Modifying the stack growth direction is
not trivial and involves many challenges. Those interested in
compiler techniques for changing the stack growth direction
are referred to [Salamat 2008a].

4.1 Effectiveness of Reverse Stack Execution
At first glance, it might seem that a reverse stack executable
is inherently immune to stack smashing attacks and there
is no need to run a reverse stack executable in an MVEE.
Although a reverse stack executable is resilient against many
of the known stack-based buffer overflow vulnerabilities, it
cannot protect against all possible cases. As an example,
consider the following C function:

void foo() {
char buf[100];
strcpy(buf, user_input_longer_than_buf);

}

A user input larger than buf can overwrite the return
address of strcpy and hijack the reverse stack version of
the application, since this address is located above the buf
on the stack. This is shown in the right side of Figure 5.

Now compare how effective a reverse stack executable
is when it runs alongside a conventional executable in the
MVEE. As Figure 5 shows, exploiting the buffer overflow

buf
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strcpy's Frame Pntr.

strcpy's Return Addr.
buf

foo's Frame Pointer

foo's Return Addr.

strcpy's Frame Pntr.

strcpy's Return Addr.

Upward GrowingDownward Growing

Figure 5. Buffer overflow vulnerabilities can be exploited
to overwrite return addresses even in an upward growing
stack.

vulnerability in the above code enables an attacker to si-
multaneously overwrite the return addresses of strcpy
and foo in the reverse and normal executables, respec-
tively. Since no system call is invoked between the point
that strcpy returns and the point that foo returns, the
MVEE does not detect any anomaly and lets the variants
continue. Therefore, both variants could be diverted to an
address where the attack code would be stored.

Since all inputs are identically given to all the variants,
the buffer containing the attack code would have the same
content in both variants. This means that the addresses used
by the instructions in the attack code would be the same
in the two variants. For example, suppose that the attack
code includes a call to exec and passes the address of
a small buffer that contains “/bin/sh” to exec. Also,
suppose that “/bin/sh” is on the white-list and allowed
by the MVEE. Almost all modern OS kernels randomize
the beginning of the heap and as a result, the addresses of
the corresponding buffers on the heaps of the two variants
are not the same. Also, addresses of stack objects are also
totally different. Therefore, the address of this small buffer
passed to exec is different in each variant, but the attack
code would have the same address and would fail.

In order to prevent the failure, the attacker would have to
divert each variant to a different address that contains attack
code valid for that particular variant. This is a high barrier
to overcome and the attacker would have to know the exact
location of the return addresses on the stack and also the
buffers that contain attack code for each variant.

In very high security applications, one might want to
add other variation mechanisms or other variants to increase
the level of provided security. Instruction set randomiza-
tion (ISR) [Kc 2003], heap layout randomization [Berger
2006, Bhatkar 2005] and system-call number randomiza-
tion [Chew 2002] are among possible variation methods that
can be used to add extra security. When ISR is used, the
injected malicious code would be valid only on one of the



variants and would cause collateral damage on the others.
ISR requires a software layer that decodes instructions back
to those understandable by the processor at run-time. ISR
cannot prevent all kinds of buffer overflow attacks, for ex-
ample, return-to-lib(c) would still be possible. Heap layout
randomization, when used in a multi-variant environment,
can protect the system against heap-based buffer overruns.
System call number randomization causes different system
calls to be invoked when the same injected code is executed
in different variants. This deviation is easily detectable by
the monitor. System call number randomization is easy to
deploy, but like ISR, return-to-lib(c) would be possible.

5. Evaluation
To demonstrate the effectiveness of the multi-variant execu-
tion environment, we create a customized test suite which
includes common benchmarks and frequently used applica-
tions. This suite allows us to evaluate the security claims and
assess the computational tradeoff in CPU- and I/O-bound
operations. While our MVEE is capable of running many
different variants, we evaluate it with two variants: standard
and reverse stack.

5.1 Security
An MVEE is well-suited for network-facing services, and
we use documented past exploits of Apache 1.3.29 and Snort
2.4.2 as test vectors. The vulnerabilities and their corre-
sponding exploits are documented with specific environ-
ments. Details of these environments include versions of the
compiler, operating system, as well as supporting libraries.
Changes in one or many of these components of the envi-
ronment can prevent an exploit from working. As a result,
we reconstruct three representative exploits for Apache and
Snort in our testing environment, a process that replicates the
steps that an attacker would take. Other than these vulnera-
bilities that exist in real-life applications, we also write small
programs with intentional buffer overflow vulnerabilities to
test our MVEE.

All vulnerabilities used for testing are stack-based buffer
overflow exploits and can be exploited using the techniques
described in Aleph One’s stack smashing tutorial [Aleph
One 1996]. They are chosen because they are representa-
tive of a large number of stack-based buffer overflow errors
that are present in software, and because these exploits have
been available publicly and likely to have been used to ob-
tain illicit access to Apache servers or systems charged with
protecting networks. These exploits simulate real-world con-
ditions, as it is likely that other server programs still con-
tain similar implementation errors [Taschner 2007]. Finally,
these vulnerabilities are chosen because they are part of the
main source package and not dependent on third party li-
braries or plugins.

5.1.1 Apache mod rewrite Vulnerability
The Apache mod rewrite vulnerability was first reported by
Jacobo Avariento. It affects all versions prior to Apache
1.3.29 [Dowd 2006]. The vulnerability involves an array of
five char* variables called token in a parsing function
called escape absolute uri(), which can be over-
flowed given the correct input. In this case, the input re-
quired more than five question marks in order to effect the
overflow. Avariento’s proof-of-concept exploit code [Avari-
ento 2006] is a customized version of Taeho Oh’s bindshell
shellcode [Oh 2000] and was further modified in order to
make Apache exploitable when compiled with GCC 4.2.1.
The extra modifications are needed because this version of
GCC arranges data on the stack differently than the versions
available when Avariento discovered the vulnerability.

5.1.2 Apache mod include Vulnerability
An anonymous author with the pseudonym “Crazy Einstein”
discovered a vulnerability in Apache’s mod include module
in 2004 [Einstein 2004]. The vulnerability describes an over-
flow in a static 8 kB array located on the stack created by
the function handle echo(). The array is passed as an
argument to get tag(), and when get tag() is given
an input longer than 8 kB, get tag() overwrites the re-
turn address of handle echo(). The exploit is success-
ful when handle echo() returns and jumps to the shell-
code address. In order to make Crazy Einstein’s exploit pro-
gram [Einstein 2006] work in our testing environment, the
program was modified to provide extra padding and proper
return addresses for shellcode.

5.1.3 Snort BackOrifice Preprocessor Vulnerability
A stack-based buffer overflow vulnerability in the Snort in-
trusion detection system was discovered by Neel Mehta of
ISS X-Force in 2005 [Mehta 2005]. Because of the trusted
nature of Snort and the permissions required in order to make
it effective, this vulnerability was considered extremely se-
rious since it can give elevated or system-level privileges on
a target system and the victim computer does not need to be
targeted directly [Manion 2005]. The vulnerability involves
a 1 kB array of char variables in BoGetDirection(),
which is used to decode and decrypt BackOrifice packets. A
carefully crafted packet, as described by an anonymous au-
thor named “rd”, can be used to overwrite the return address
of BoGetDirection()’s caller, BoFind() [rd 2005].
In order to make rd’s exploit program work, it was modified
with proper padding lengths and addresses corresponding to
the GCC 4.2.1-based environment.

5.1.4 Effectiveness of the MVEE
For all vulnerabilities, when the variants with a downward
growing stack are given the exploit code the exploits suc-
ceed and an attacker is able to obtain illicit access to the
target computer. When an upward growing stack variant is
presented with the same exploit code, the variant continues



to run since the buffer overflow writes into unused mem-
ory. When variants of each direction are run in parallel and
under supervision of our monitor, the attempted code injec-
tion is detected and execution is terminated because shell-
code executed by the downward growing stack variant con-
tains system calls. All the buffer overflow attacks on our test
programs are also detected by the MVEE, because the at-
tack vectors either cause divergence between the variants or
cause one or both variants to be terminated by the OS.

5.2 Performance
The second component of our test suite includes tests de-
signed to assess performance of the MVEE. In order to run
these tests, we compile and build executables of find 4.1, tar
1.12, a MD5 sum generation program (md5deep 2.0.1-001),
apache 1.3.29 and SPEC CPU2000 [Standard Performance
Evaluation Corporation (SPEC)] with both downward and
upward growing stacks, and then measure the performance
penalty of these applications while running on the MVEE.
Although the MVEE concept is targeted towards running se-
curity sensitive or network-facing applications, the chosen
set of benchmark programs are representatives of I/O- and
CPU-bound applications that might be executed in such an
environment.

All performance evaluations are performed on an Intel
Core 2 Quad Q9300 2.50 GHz system running Ubuntu Linux
8.10 and Linux kernel 2.6.27-9. All benchmark applications
are run under two conditions: (a) with the highest scheduling
priority (nice -20) on an otherwise unloaded machine
(Figure 6) and (b) with normal scheduling priority when
three other CPU intensive applications run in parallel with
the benchmark programs (Figure 7).

Disk-based tests are run several times to remove disk
caching effects from skewing the results, and then run again
several times to collect data. Once the data is collected, the
highest and lowest times are discarded and the average of the
remaining times is computed.

Find: find is used as an I/O-bound test. In this test, we
search the whole disk partition of our test platform for all C
source code files (files ending in “.c”). To eliminate effects
caused by find printing to the screen, the standard output is
redirected to /dev/null.

Tar: tar is selected as a test to show the effects of the
MVEE on I/O-bound applications. In this test, we check out
the source code of the Eclipse development platform and
create a tar archive of the data. The source code is composed
of many subdirectories, each of which contains many small
text and JAR files. Because of this property, the tar test is not
reduced to a sequential read operation, which would have
occurred if we had used a DVD ISO image. The size of the
data set is 3 GB.

md5deep: md5deep is a program that generates MD5
sums for files and directories of files. It provides a good mix
of I/O- and CPU-bound operations, as the program computes

the MD5 sum while reading each file. md5deep has been run
over two CD ISO images, totaling 1.5 GB of data.

Apache: The version of Apache that is used for security
testing is the same as that of the one used as a performance
test. In order to see what effect the monitor has on Apache,
we use the provided version of ApacheBench [Apache Soft-
ware Foundation] to request a 27 KB HTML document.
ApacheBench requests the file 10,000 times from a sepa-
rate computer connected to the target server via an unloaded
gigabit ethernet connection.

SPEC CPU2000: SPEC CPU2000 is an industry stan-
dard benchmark for testing the computational ability of a
system. It is composed of various tools that have heavy CPU-
bound characteristics. All of the SPEC tests are used when
evaluating the performance of the MVEE, except the FOR-
TRAN and C++ tests, because we currently only have a C
library that operates in the reverse-stack mode.

5.3 Analysis
Figure 6 presents the results of the performance evaluation
of the MVEE on an otherwise unloaded system and Figure 7
shows these results on a loaded system that runs three other
CPU intensive applications in parallel to the benchmarks.
These CPU intensive programs fully utilize three cores of
the processor and are run to simulate an environment where
competition to acquire the CPU is high.

The results in Figure 6 show that the monitor imposes
an average performance penalty of 16% and 14% for run-
ning both upward and downward growing variants (DU ex-
ecution) and two downward growing variants (DD execu-
tion), respectively. Note that the baseline of the comparison
(100% performance) is a normal executable that writes the
stack downward. Therefore, in cases where the benchmark
is not multi-threaded or multi-process, only one of the pro-
cessor cores is used when running the baseline and the other
cores are idle. The figure also shows that upward-growing
stack variants have an average performance penalty of 2%.

The average static size of upward growing stack bench-
marks is 10% larger than that of their downward growing
stack counterparts. More importantly, the number of dy-
namic instructions executed by the upward growing stack
executables is on average 7% more than those executed by
the executables that grow the stack downward (not shown in
the figure). The primary reason why the runtime overhead of
reverse stack execution (U execution in the figures) is small
is that the difference between downward and upward grow-
ing stack variants is the addition of some ADD and SUB in-
structions to manage the stack pointer. Superscalar proces-
sors parallelize these instructions with other instructions in
the program and execute them with almost no overhead.

In some cases, such as mcf, equake, art, and tar, we
experience a small speedup when the test is run with a
reverse stack. This is likely due to the fact that growing the
stack upward better matches the default cache pre-fetching
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Figure 7. Comparison of the performance of program variants and the MVEE relative to conventional programs when run on
a loaded system which runs three other CPU intensive applications in parallel to the benchmark programs.

heuristics, which results in a slightly better cache hit rate and
improves overall performance.

When the tests are run in the MVEE (DU execution
and DD execution in Figure 6), the results show that the
mostly CPU-bound SPEC tests experience little perfor-
mance penalty. The two main exceptions to this are gcc
and equake. gcc invokes more than 7000 system calls per
second, which is very high compared to other benchmarks.
Monitoring these system calls causes the performance degra-

dation. The performance degradation of equake is caused by
memory bandwidth. equake is a memory intensive bench-
mark and memory bandwidth becomes the bottleneck when
running two instances of equake in parallel.

Performance overhead of the MVEE increases signifi-
cantly when the SPEC benchmarks are executed on a loaded
system (see Figure 7). This is expected, because these are
mostly CPU-bound benchmarks. Running two parallel in-
stances of a CPU-bound benchmark on a system that has



only one available processor core causes a performance
penalty approaching 50%.

The I/O-bound tests, especially apache and tar, experi-
ence a larger performance penalty. In the case of apache, the
monitor does all of the socket operations and has to examine
all the data sent or received via the network. This means that
data that is to be sent has to be transferred from the variants
to the monitor, checked for equality, and then sent over the
network by the monitor. Also, all requests from the network
are received by the monitor and then copied to all the vari-
ants. The performance degradation for apache is less than
50%. apache is a multi-process benchmark and is expected
to engage all available processing cores when executed con-
ventionally. As a result, we expected to see a much larger
performance drop when running apache in the MVEE on a
loaded system. Instead, we found that the network interface
is the bottleneck which prevents the server from fully uti-
lizing the available processing units [Pinheiro 2001]. Conse-
quently, we do not see a performance drop for apache on a
loaded system comparing to the results obtained on an un-
loaded system.

The performance penalty encountered in the tar bench-
mark is partially due to the monitor examining the relative
path names of over 300,000 files. Moreover, the output of
tar is a large file which is written by the monitor. All data
that the variants write to the file must be transfered to the
monitor, compared, and written to the file by the monitor.

Since the CPU is not the bottleneck in the I/O-bound ap-
plications, including apache, tar and find, we do not expect
significant changes in the results when these tests are run on
a loaded system. However, tar results show an improvement
when run on a loaded system. Surprisingly, this is not only a
relative performance improvement, but also an actual perfor-
mance improvement; tar runs faster on a loaded system even
when it is executed conventionally and in the absence of the
MVEE. While explaining this phenomenon is not easy, we
guess that assigning the same processor core for running the
benchmark could be the reason. On a loaded system where
processor cores are running other processes and there is only
one available core, it is likely that the same core be used to
run the benchmark after context switches. This could result
in a higher L1 cache hit rate and better overall performance.

6. Related Work
Software security is extremely important, and hence there is
a much larger body of related work than space constraints
permit us to cite. We apologize for the necessity to select a
subset and present the following pioneering earlier work that
our research builds upon:

The idea of using diversity to improve robustness has
a long history in the fault tolerance community [Avizienis
1977]. The basic idea has been to generate multiple inde-
pendent solutions to a problem (e.g., multiple versions of
a program, developed by independent teams in independent

locations using even different programming languages), with
the hope that they will fail independently.

Along with a rising awareness of the threat posed by an
increasingly severe computer monoculture, replication and
diversity have also been proposed as a means for improv-
ing security. [Joseph 1988] proposed the use of n-version
programming in conjunction with control flow hashes to de-
tect and contain computer viruses. [McDermott 1997] pro-
posed the use of logical replication as a defense tool in an n-
version database setting. Rather than merely replicating data
across databases, they re-executed commands on each of the
replicated databases. This made it much more difficult for
an attacker to corrupt the database in a consistent manner by
way of a Trojan horse program. [Cohen 1993] proposed the
use of obfuscation to protect operating systems from attacks
by hackers or viruses, an idea that has reappeared in many
variants. [Pu 1996] described a toolkit to automatically gen-
erate several different variants of a program, in a quest to
support operating system implementation diversity. [Forrest
1997] proposed compiler-guided variance-enhancing tech-
niques such as interspersing non-functional code into appli-
cation programs, reordering the basic blocks of a program,
reordering individual instructions via instruction scheduling,
and changing the memory layout. [Chew 2002] proposed au-
tomated diversity of the interface between application pro-
grams and the operating system by using system call ran-
domization in conjunction with link-time binary rewriting
of the code that called these functions. They also proposed
randomizing the placement of an application’s stack.

Recently, researchers have started to look at providing di-
versity using simultaneous n-variant execution on the same
platform, rather than merely creating diversity across a net-
work of computers; our method falls into this category. [Cox
2006] proposed running several artificially diversified vari-
ants of a program on the same computer. Unlike our method,
their approach requires modifications to the Linux kernel,
which increases the maintenance effort and related security
risks. They addressed a limited set of the sources of inconsis-
tencies among the variants and their platform did not support
certain classes of system calls, including exec family.

Also closely related, [Berger 2006] proposed redundant
execution with multiple variants that provided probabilistic
memory safety by way of a randomized layout of objects
within the heap. Their proposed replicated execution mech-
anism was limited to monitoring the standard I/O. The focus
of the work was on reliability (in particular resilience against
memory errors) rather than on attack prevention.

A large body of existing research has studied the preven-
tion of buffer overflow attacks at run-time through software
only [Kuperman 2005, Wilander 2003]. Several existing so-
lutions are based on obfuscating return addresses and other
code and data pointers that might be compromised by an at-
tacker [Bhatkar 2003]. The simplest of these uses an XOR
mask to both “encrypt” and “decrypt” such values with low



overhead. [Cowan 1998] takes an alternative approach and
places an extra value called a canary in front of the return ad-
dress on the stack. The assumption is that any stack smash-
ing attack that would overwrite the return address would
also modify the canary value, and hence checking the canary
prior to returning would detect such an attack. StackGuard
does not protect against overflows in automatically allocated
structures which overwrite function pointers.

[PaX] and [Solar Designer] implement non-executable
stacks. This technique does not allow control transfer to the
stack by marking the stack memory space as non-executable.
Therefore, it prevents attackers from executing code injected
to the stack. While many new microprocessors have imple-
mented the necessary hardware support for a non-executable
stack, it does not provide protection against return-to-lib(c)
attacks [Nergal 2001]. This technique also causes compati-
bility issues. For instance, just-in-time compilers which gen-
erate and execute dynamic code may not work properly with
non-executable stacks.

7. Conclusions and Outlook
We have presented a new defense against stack-based at-
tacks and a new technique to build multi-variant execution
environments that run as unprivileged user-space processes,
limiting the repercussions of potential programming errors
in building the MVEE. We have also addressed many chal-
lenges in developing such environments, including how to
deal with sources of inconsistencies among the variants, and
have implemented mechanisms to improve performance of
the MVEE.

Our results show that deploying the MVEE on parallel
hardware provides extra security with modest performance
degradation. Our method uses user-space techniques to cre-
ate the perception of a virtual OS kernel without requiring
changes to the OS kernel proper. We have shown that the per-
formance overhead for this approach is acceptable for many
applications, in particular considering the beneficial effect of
not having to modify kernel code.

Many everyday applications are mostly sequential in na-
ture. At the same time, automatic parallelization techniques
are not yet effective enough on such workloads. Even in par-
allel applications, such as web servers, limited I/O band-
width prevents us from putting all available processing re-
sources into service. As a result, parallel processors in to-
day’s computers are often partially idle. By running pro-
grams in MVEEs on such multi-core processors, we put the
parallel hardware in good use and make the programs much
more resilient against code injection attacks.

As far as future work is concerned, we are interested in
ways to repair corrupted instances instead of having to ter-
minate them. Such a system would automatically quaran-
tine, re-initialize, and resume processes that have become
corrupted.
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